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Dynamic stability and time responses are studied for an automatic ball balancer of a
rotor with a flexible shaft. The Stodola–Green rotor model, of which the shaft is flexible, is
selected for analysis. This rotor model is able to include the influence of rigid-body
rotations due to the shaft flexibility on dynamic responses. Applying Lagrange’s equation
to the rotor with the ball balancer, the non-linear equations of motion are derived. Based
on the linearized equations, the stability of the ball balancer around the balanced
equilibrium position is analyzed. On the other hand, the time responses computed from the
non-linear equations are investigated. This study shows that the automatic ball balancer
can achieve the balancing of a rotor with a flexible shaft if the system parameters of the
balancer satisfy the stability conditions for the balanced equilibrium position.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

An automatic ball balancer (ABB) is a device to automatically eliminate the variable
imbalance of rotating mechanisms. Only one time of balancing is sufficient for a rotor with
a fixed amount of imbalance; however, one time of balancing cannot eliminate the
imbalance of a rotor with variable imbalance depending on the rotating speed. For this
purpose, automatic ball balancers are used to reduce the imbalance in washing machines
and optical disk drives such as CD-ROM and DVD drives.

A few studies of ABBs have been reported compared to other balancing topics. The
basic research was initiated by Thearl [1, 2], Alexander [3] and Cade [4]. Dynamic analyses
for various ball balancers can be found in references [5–7]. Since the previous equations of
motion are for non-autonomous systems, these equations have limitations on complete
stability analysis. To overcome this drawback, Chung and Ro [8] studied the stability and
dynamic behaviour of an ABB for the Jeffcott rotor. They derived the equations of motion
for an autonomous system by using the polar co-ordinates instead of the rectangular co-
ordinates. Hwang and Chung [9] applied this approach to the analysis of an ABB with
double races. However, the previous studies mentioned above dealt with only ball
balancers related to the Jeffcott rotor model. The Jeffcott rotor model is inadequate to
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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explain the phenomena that arise due to the rigid-body rotation related to shaft flexibility.
Therefore, it is needed to study an ABB for a rotor with a flexible shaft.

In this study, the stability and time responses for an ABB are analyzed when the ball
balancer is equipped in a rotor with a flexible shaft. Since the Jeffcott rotor model is
basically a particle or point-mass representation, this model is inadequate to explain rigid-
body characteristics caused by the flexibility of a rotor shaft [10]. Therefore, in order to
analyze the dynamics of the balancer for a rotor with a flexible shaft, the Stodola–Green
rotor model [11, 12] is adopted instead of the Jeffcott model. Describing the rotor centre
with the polar co-ordinates, the non-linear equations of motion for an autonomous system
are derived from Lagrange’s equation. After a balanced equilibrium position and
linearized equations in the neighbourhood of the equilibrium position are obtained by the
perturbation method, the stability analysis around the balanced equilibrium position is
performed with Routh–Hurwitz criteria and the time responses are also investigated.

2. NON-LINEAR EQUATIONS OF MOTION

The Stodola–Green rotor model with an ABB is shown in Figure 1, where the flexible
shaft of length L connects the rigid rotor and the wall. It is assumed that the shaft mass is
negligible compared to the rotor mass. The XYZ-co-ordinate system is a space-fixed
inertia reference frame and points G and C are the mass centre and centroid of the rotor
respectively. Point O may be regarded as projection of the centroid C onto the axis O0Z:
The ball balancer consists of a circular rotor with a groove containing balls and a damping
fluid. The balls move freely in the groove and the rotor spins with angular velocity o: Since
the deflection of the shaft is generally small, it may be assumed that the centroid C moves
in the XY -plane. As shown in Figure 2, the centroid C is defined by the polar co-ordinates
r and y: The mass centre G can be defined by eccentricity e and angle ot for the given
position of the centroid and the angular position of the ball Bi is given by the pitch radius
R and angle fi:

To describe the rigid-body rotations of the rotor with respect to the X- or Y-axis, it is
helpful to consider the Euler angles which give the orientation of the rotor-fixed xyz-
co-ordinate system relative to the space-fixed XYZ-co-ordinate system. In this study, the
Euler angles of ot; a and b are used as shown in Figure 2. A rotation through an angle ot

about the Z-axis results in the primed system, i.e., the x0y0z0-co-ordinate system. A further
Figure 1. Stodola–Green rotor model with the automatic ball balancer.



Figure 2. Configuration of an ABB in the Stodola–Green rotor model: (a) the configuration of the balancer
after rotation of only ot; one of the Euler angles; and (b) the configurations of the other Euler angles a and b:
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rotation a about the x0-axis puts the rotor into an orientation coincident to the doubled-
primed x00y00z00-co-ordinate system. Finally, a rotation b about the y00-axis yields the
unprimed xyz-co-ordinate system. These co-ordinate transformations can be arranged in
the matrix form:

x0 ¼ ToX; x00 ¼ Tax
0; x ¼ Tbx

00; ð1Þ

where

To ¼
cosot sinot 0

�sinot cosot 0

0 0 1

2
64

3
75; Ta ¼

1 0 0

0 cos a sin a

0 �sin a cos a

2
64

3
75; Tb ¼

cos b 0 �sin b

0 1 0

sin b 0 cos b

2
64

3
75;
ð2Þ

X ¼ X #IIþ Y #JJþ Z #KK; x0 ¼ x0i0 þ y0j0 þ z0k0; x00 ¼ x00i00 þ y00j00 þ z00k00; x ¼ xiþ yjþ zk

ð3Þ

in which #II; #JJ and #KK are the unit vectors along the X -, Y - and Z-axes; i0; j0and k0 are the unit
vectors along the x0-,y0- and z0-axis; i; j and k are the unit vectors along the x-, y- and z-axis
respectively.

First, consider the kinetic energy of the rotor system with the ABB. The position vector
of the mass centre G can be expressed in the xyz-co-ordinate system by using the rotation
matrices, To; Ta and Tb:

rG ¼ TbTaTorOC=XYZ þ rCG; ð4Þ

where

rOC=XYZ ¼ rðcos y#IIþ sin y #JJÞ; rCG ¼ ei: ð5Þ

Using a new generalized co-ordinate c defined by

c ¼ ot � y; ð6Þ
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the position vector of the mass centre, rG; and the position vector of the ball Bi; rBi; can be
written as

rG ¼ ½rðcos b cos c� sin a sin b sin cÞ þ e�i� r cos a sin cj

þ rðsin b cos cþ sin a cos b sin cÞk: ð7Þ

rBi ¼ ½rðcos b cos c� sin a sin b sincÞ þ R cos fi�iþ ð�r cos a sin cþ R sinfiÞj

þ rðsin b cos cþ sin a cos b sin cÞk: ð8Þ

When the ball balancer has n balls, the kinetic energy T is given by

T ¼ 1

2
xTJx þ 1

2
M

drG

dt
	 drG

dt
þ 1

2
m
Xn

i¼1

drBi

dt
	 drBi

dt
: ð9Þ

where J is the inertia matrix and x is the angular velocity vector of the rotor:

J ¼
J 0 0

0 J 0

0 0 Jz

2
64

3
75; ð10Þ

x ¼ ð�x cos a sin bþ ’aa cos bÞiþ ðx sin aþ ’bbÞjþ ðx cos a cos bþ ’aa sin bÞk ð11Þ

in which J is the mass moment of inertia about the x- or y-axis and Jz is the mass moment
of inertia about the z-axis.

Neglecting gravity and the torsional and longitudinal deflections of the shaft, the
potential energy, or the strain energy, results from the bending deflection of the shaft. As
shown in Figure 1, the shaft can be regarded as a cantilever beam, which is fixed at Z ¼ 0
and free at Z ¼ L: The shaft deflections in the X and Y directions at Z ¼ L; DX and DY ;
are given by

DX ¼ r cos y; DY ¼ r sin y: ð12Þ

For the given rotation angles a and b; the rotation angles about the X- and Y-axis, FX and
FY ; are given by

FX ¼ a cosot � b cos asinot; FY ¼ a sinot þ b cos a cosot: ð13Þ

Since the deflection and slope at Z ¼ L in the ZX-plane are DX and FY while those in the
ZY-plane are DY and �FX ; the deflection curves of the shaft in the ZX - and ZY-planes,
dX and dY ; can be expressed as

dX ¼ 3DX � LFY

L2
Z2 � 2DX � LFY

L3
Z3; dY ¼ 3DY þ LFX

L2
Z2 � 2DY þ LFX

L3
Z3: ð14Þ

In this case, the strain energy V due to the shaft bending is

V ¼ 1

2
EI

Z L

0

@2dX

@Z2

	 
2

þ @2dY

@Z2

	 
2
" #

dZ; ð15Þ

where E is Young’s modulus and I is the area moment of inertia of the shaft cross-section.
On the other hand, Rayleigh’s dissipation function F can be represented by

F ¼ 1

2
ctð’rr2 þ r2 ’yy

2Þ þ 1

2
crð’aa2 þ ’bb

2Þ þ 1

2
D
Xn

i¼1

’ff
2

i ; ð16Þ
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where ct is the equivalent damping coefficient for translation, cr is the equivalent damping
coefficient for rotation, and D is the viscous drag coefficient of the ball in the damping
fluid. It is assumed that the balls have the same viscous drag coefficient D:

The equations of motion for the ABB are derived from Lagrange’s equation given by

d

dt

@T

@ ’qqk

	 

� @T

@qk

þ @V

@qk

þ @F

@ ’qqk

¼ 0; ð17Þ

where qk are the generalized co-ordinates. For the given system, the generalized co-
ordinates are r;c; a; b and fiði ¼ 1; 2; . . . ; nÞ; therefore, the dynamic behaviour of the
balancer is governed by n þ 4 independent equations of motion. Substitution of equations
(9), (15) and (16) into equation (17) yields the equations of motion. Since r; a; b and e are
small, the products of these parameters are negligible. Under the assumption that r; a; b
and e are small, the equations of motion are simplified to

ðMþ nmÞ½.rr � rðo� ’ccÞ2� þ ct ’rr þ
12EI

L3
r � 6EI

L2
a sin c� 6EI

L2
b cos c

� mR
Xn

i¼1

½ .ffi sinðfi þ cÞ þ ð ’ffi þ oÞ2cosðfi þ cÞ� ¼ Meo2cos c; ð18Þ

ðMþ nmÞ½r .cc� 2’rrðo� ’ccÞ� � ctrðo� ’ccÞ � 6EI

L2
a cos cþ 6EI

L2
b sinc

� mR
Xn

i¼1

½ .ffi cosðfi þ cÞ � ð ’ffi þ oÞ2 sinðfi þ cÞ� ¼ �Meo2sin c; ð19Þ

 
JþmR2

Xn

i¼1

sin2 fi

!
.aa� mR2 .bb

Xn

i¼1

cos fi sin fi

þ cr þ 2mR2
Xn

i¼1

’fficos fi sin fi

 !
’aaþ

"
ðJz � 2JÞoþ 2mR2

Xn

i¼1

’ffi sin
2 fi

#
’bb

� 6EI

L2
r sin cþ 4EI

L
þ ðJz � JÞo2 þ mR2

Xn

i¼1

ð2o ’ffi þ o2Þsin2 fi

" #
a

þ mR2b
Xn

i¼1

½ .ffi � ð2o ’ffi þ o2Þcos fi sinfi� ¼ 0; ð20Þ

�mR2 .aa
Xn

i¼1

cos fi sin fi þ J þ mR2
Xn

i¼1

cos2 fi

 !
.bb

� ðJz � 2JÞoþ 2mR2
Xn

i¼1

’ffi cos
2 fi

" #
’aaþ

 
cr � 2mR2

Xn

i¼1

’ffi cos fi sin fi

!
’bb

� 6EI

L2
r cos c� mR2a

Xn

i¼1

ð2o ’ffi þ o2Þcos fi sinfi

þ 4EI

L
þ ðJz � JÞo2 þ mR2

Xn

i¼1

ð2o ’ffi þ o2Þcos2 fi

" #
b ¼ 0 ð21Þ
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m R2 .ffi þ D ’ffi � mR½.rr � rðo� ’ccÞ2�sinðfi þ cÞ þ mR½�r .cc

þ 2’rrðo� ’ccÞ�cosðfi þ cÞ ¼ 0; i ¼ 1; 2; . . . ; n: ð22Þ
It is noted that the equations of motion given by equations (18)–(22) are non-linear
because c and fi are not small while r; a and b are small.

3. BALANCED POSITION AND LINEARIZED EQUATIONS

The perturbation method is used to obtain equilibrium positions and linearized
perturbation equations of motion in the neighbourhood of the equilibrium positions. The
generalized co-ordinates r;c; a; b and fi can be represented by

r ¼ rn þ Dr; c ¼ cn þ Dc; a ¼ an þ Da; b ¼ bn þ Db; fi ¼ fn

i þ Dfi; ð23Þ
where rn; cn; an; bn and fn

i are the co-ordinates for an equilibrium position and Dr; Dc;
Da; Db and Dfi are the small perturbations of the generalized co-ordinates in the
neighbourhood of the equilibrium position.

As discussed in reference [4], the equilibrium positions may be classified into two cases:
the balanced and unbalanced cases, which correspond to rn ¼ 0 and=0 respectively. Since
the balanced equilibrium position of rn ¼ 0 is important from a practical point of view,
only the equilibrium position corresponding to rn ¼ 0 and the linearized equations in the
neighbourhood of theses equilibrium positions are considered in this study. Substitution of
equations (23) into equations (18)–(22) results in the balanced equilibrium positions and
the linearized equations about the balanced equilibrium position. The balanced
equilibrium positions are given by

rn ¼ an ¼ bn ¼ 0;
Xn

i¼1

cos fn

i ¼ �Me
mR

;
Xn

i¼1

sin fn

i ¼ 0: ð24Þ

It should be pointed out that cn cannot be defined for the balanced equilibrium positions.
For simplicity, deleting D from Dr; Dc; Da; Db and Dfi; the linearized equations of motion
are written as

ðM þ nmÞ.rr þ ct ’rr þ
12EI

L3
� ðM þ nmÞo2

� �
r � 6EI

L2
a sin cn

� 6EI

L2
b cos cn � mR

Xn

i¼1

½ .ffisinðfn

i þ cnÞ

þ 2o ’fficosðfn

i þ cnÞ � o2fisinðfn

i þ cnÞ� ¼ 0 ð25Þ

� 2ðM þ nmÞo’rr � ctor � 6EI

L2
a cos cn þ 6EI

L2
b sin cn � mR

Xn

i¼1

½ .ffi cosðfn

i þ cnÞ

� 2o ’ffi sinðfn

i þ cnÞ � o2fi cosðfn

i þ cnÞ� ¼ 0; ð26Þ 
J þ mR2

Xn

i¼1

sin2fn

i

!
.aa� mR2 .bb

Xn

i¼1

cos fn

i sinfn

i þ cr ’aaþ ðJz � 2JÞo ’bb� 6EI

L2
r sin cn

þ 4EI

L
þ ðJz � JÞo2 þ mR2o2

Xn

i¼1

sin2 fn

i

" #
a� mR2o2b

Xn

i¼1

cos fn

i sin fn

i ¼ 0; ð27Þ
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�mR2 .aa
Xn

i¼1

cos fn

i sinfn

i þ
 

J þ mR2
Xn

i¼1

cos2 fn

i

!
.bb� ðJz � 2JÞo’aaþ cr

’bb� 6EI

L2
r cos cn

� mR2o2a
Xn

i¼1

cos fn

i sin fn

i þ
4EI

L
þ ðJz � JÞo2 þ mR2o2

Xn

i¼1

cos2 fn

i

" #
b ¼ 0; ð28Þ

m R2 .ffi þ D ’ffi � mR½.rrsinðfn

i þ cnÞ � 2o’rrcosðfn

i þ cnÞ � o2rsinðfn

i þ cnÞ�

¼ 0; i ¼ 1; 2; . . . ; n ð29Þ

4. STABILITY ANALYSIS

The stability of the ABB is analyzed with the linearized equations of motion in the
neighbourhood of the balanced equilibrium position. For simplicity of the stability
analysis, it is assumed that the number of balls is two, i.e., n ¼ 2: When the ball balancer
has two balls, the steady state solutions can be classified into two: one is for the balanced
equilibrium position and the other is for the unbalanced equilibrium position. Since the
unbalanced equilibrium position is not practically important compared to the balanced
position, the stability analysis in the neighbourhood of the unbalanced position is omitted
from this paper. The mass moments of inertia, J and Jz; are given by

J ¼ 1
4
MR2; Jz ¼ 1

2
MR2 ð30Þ

and the balanced equilibrium position is represented by

rn ¼ an ¼ bn ¼ 0; fn

1 ¼ �fn

2 ¼ �tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mR=MeÞ2 � 1

q
: ð31Þ

It is noted that the value of cn is not defined when rn ¼ 0: In order to analyze the stability
in the neighbourhood of the balanced equilibrium position, small perturbations of the
generalized co-ordinates from the balanced position can be written as

r ¼ Xre
lt; a ¼ Xae

lt; b ¼ Xbe
lt; f1 ¼ Xf1e

lt; f2 ¼ Xf2e
lt; ð32Þ

where l is a characteristic value or an eigenvalue. Substituting equations (31) and (32) into
equations (25)–(29) and using the identity equation

cos2 cn þ sin2 cn ¼ 1; ð33Þ

the condition that equations (32) have non-trivial solutions can be expressed as the
characteristic equation given as

X12
k¼0

ckl
k ¼ 0; ð34Þ

where the coefficients ck ðk ¼ 0; 1; . . . ; 12Þ are functions of o; M;m;R;L; e;E; I ;D; ct and
cr: Since ck are complicated functions of the above system parameters, the explicit
expressions are omitted from this paper.

The Routh–Hurwitz criteria are used to investigate the stability of the ABB. If all the
eigenvalues, namely, the roots of equation (34) have negative real parts, the ball balancer is
asymptotically stable. The Routh–Hurwitz criteria provide the necessary and sufficient
conditions for the real parts of all roots to be negative. For convenience of discussion, the
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following parameters are introduced:

o0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
12EI

ML3

r
; zt ¼

ct

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L3

3MEI

s
; zr ¼

cr

4

ffiffiffiffiffiffiffiffi
L

JEI

r
; ð35Þ

where o0 is the reference frequency; zt and zr are dimensionless damping factors for
translation and rotation. The stability of the balancer are studied for the variations of the
non-dimensional system parameters such as o=o0; m=M; e=R; D=mR2o0; zt and zr: The
description of the stability for the variations of all the system parameters is impossible, so
in this study the stability is analyzed with the variations of a pair of parameters, that is,
o=o0 versus m=M; o=o0 versus e=R; o=o0 versus D=mR2o0; o=o0 versus zt; and o=o0

versus zr: The non-dimensional parameters for all the stability analyses are given by
L=R ¼ 1 and m=M ¼ e=R ¼ D=mR2o0 ¼ zt ¼ zr ¼ 0	01:

First, consider the stability of the automatic ball balancer in the neighbourhood of the
balanced equilibrium position for the variations of the rotating speed, the ball mass and
the eccentricity. Figure 3(a) shows the stable region or the balancing region for the
variation of o=o0 versus m=M while Figure 3(b) shows the stable region for the variation
of o=o0 versus e=R: The straight boundaries in Figures 3(a) and (b) are related to the
condition given by

2
m

M
5

e
R
; ð36Þ

which implies that the mass of two balls should be large enough to cover the imbalance of
the rotor. It is also shown in equation (31) that the ball position cannot be defined if the
inequality equation of equation (36) is not satisfied. Denoting the natural frequencies of
the rotor without balls by o1 and o2; these natural frequencies can be obtained from

M 0

0 J

" #
.rr

.aa

( )
þ 2EI

L3

6 �3L

�3L 2L3

" #
r

a

( )
¼

0

0

( )
: ð37Þ
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m
/M
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Figure 3. Stability in the neighbourhood of the balanced equilibrium position for the variations of the rotating
speed, the ball mass and the eccentricity: (a) o=o0 versus m=M; and (b) o=o0 versus e=R:
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Figure 4. Stability in the neighbourhood of the balanced equilibrium position for the variations of the rotating
speed and the damping factors: (a) o=o0 versus D=mR2o0; (b) o=o0 versus zt; and (c) o=o0 versus zr:
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It is interesting that the stability in the neighbourhood of the balanced equilibrium
position is guaranteed when the rotating speed o is greater than the first natural frequency
o1 of the rotor. However, it seems that the second natural frequency o2 is irrelevant to the
stability of the rotor.

Next, the effects of the dissipation mechanisms on stability are analyzed. Figures 4(a)
and (b) show that the ABB is not able to achieve the balance of the rotor if D ¼ 0 or
zt ¼ 0: This means that the fluid damping D and the dissipation for translation zt are
crucial factors for balancing. However, Figure 4(c) demonstrates that the automatic
balancer is stable about the balanced equilibrium position even when zr ¼ 0: In other
words, the balancer without damping for rotation can obtain balance.

5. TIME RESPONSES

Time responses of the ABB are investigated to verify the stability of the ball balancer
and to analyze the dynamic behaviour. From the non-linear equations of motion given by
equations (18)–(22), the time responses are computed by the generalized-a time integration
method [13]. When the ball balancer has two balls, i.e., n ¼ 2; the non-linear equations
(18)–(22) may be expressed by the following matrix–vector equation:

MðxÞ .xxþNð ’xx; xÞ ¼ 0; ð38Þ
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where M is the mass matrix, N is the non-linear internal force vector, and x is the
displacement vector:

x ¼ fr;c; a; b;f1;f2g
T: ð39Þ

Note that the mass matrix M is a function of the displacement vector x while the internal
force vector N is a function of the displacement vector x and the velocity vector ’xx: The
material properties and dimensions for computation of time responses are given by R ¼
0	1 m; M ¼ 1 kg; m ¼ 0	001 kg; EI ¼ 10 Nm2; L=R ¼ 1 and m=M ¼ e=R ¼ D=mR2o0 ¼
zt ¼ zr ¼ 0	01: The mass moments of inertia, J and Jz; are given by equations (30). The
procedure to obtain the time responses by using the generalized-a method can be found in
reference [4].

Time responses are computed for the cases of o=o0 ¼ 0	5; 1 and 3. The initial conditions
are given as rð0Þ ¼ 0	001 m; cð0Þ ¼ 08; að0Þ ¼ 188; bð0Þ ¼ 188; f1ð0Þ ¼ 458 and
r/
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Figure 5. Time responses of the automatic ball balancer when o=o0 ¼ 0:5: (a) the radial displacement r;
(b) the rotation angle a; (c) the rotation angle b; and (d) the ball positions f1 and f2:
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f2ð0Þ ¼ 908: Figures 3 and 4 show that the rotating speeds of o=o0 ¼ 0	5 and 1 are in the
unstable region for the balanced equilibrium position if the balancer has the system
parameters given above. On the other hand, it is observed that the speed of o=o0 ¼ 3 is in
the stable region. Time responses of the ABB, when o=o0 ¼ 0	5; are presented in Figure 5.
This figure demonstrates that, as time increases, the non-dimensional radial displacement,
the rotation angles and the ball positions converge to r=R ¼ 0	0612; a ¼ 1	07038; b ¼
4	24128 and f1 ¼ f2 ¼ �14	14248 respectively. Therefore, the ball balancer does not
perform the balancing of the rotor that may be expressed by r ¼ a ¼ b ¼ 0: Figure 6
demonstrates that when o=o0 ¼ 1 the ball balancer is also unstable in the neighbourhood
of the balanced equilibrium position. In Figure 6, the radial displacement, the rotation
angles and the ball positions are varied continually with time so that they do not have the
converged values. However, when the ball balancer is in the stable region for the balanced
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Figure 6. Time responses of the automatic ball balancer when o=o0 ¼ 1: (a) the radial displacement r; (b) the
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equilibrium position, e.g., when o=o0 ¼ 3; the balancer achieves the balancing of the
rotor. In this case, the radial displacement and the rotation angles converge to zero, i.e.,
r ¼ a ¼ b ¼ 0, as shown in Figures 7(a), (b) and (c). Figure 7(d) demonstrates that the
converged values for the ball positions are f1 ¼ 1208 and f2 ¼ �1208, which can be
obtained from equations (31) and satisfy equations (24). This means that the balancer is
not only in static equilibrium but also in dynamic equilibrium.

6. CONCLUSIONS

In this paper, dynamic stability and responses are analyzed for an automatic ball
balancer of a rotor with a flexible shaft. To consider rigid-body rotations due to shaft
flexibility, this study adopts the Stodola–Green rotor model instead of the Jeffcott rotor
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model. With the ball balancer of the Stodola–Green rotor, the non-linear equations of
motion are newly derived, which are for an autonomous system. Applying the
perturbation method to these equations, a balanced equilibrium position and linearized
equations in the neighbourhood of the equilibrium position are obtained.

Based on the linearized equations, in the neighbourhood of the balanced equilibrium
position, the stability analysis is performed by using the Routh–Hurwitz criteria. On the
other hand, time responses are computed from the non-linear equations of motion and
they are investigated. The results of this study may be summarized as follows.

(1) The automatic ball balancer can achieve the balancing of the Stodola–Green rotor as
well as the Jeffcott rotor.

(2) The balancing can be obtained only in the case in which the system parameters are in
the stability region for the balanced equilibrium position.

(3) To obtain the balancing, the rotating speed should be greater than the first natural
frequency; however, it may be less than the second natural frequency.

(4) The fluid damping D and the dissipation for translation ct are essential to obtain
balancing, but the dissipation for rotation cr is not.

(5) When the ball balancer enables a rotor to be balanced, not only the radial
displacement r but also the rotation angles a and b converge to zero with time.
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